Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Manifold Curvature Descriptors from Hypersurface Integral Invariants (1804.04808v1)

Published 13 Apr 2018 in math.DG

Abstract: Integral invariants obtained from Principal Component Analysis on a small kernel domain of a submanifold encode important geometric information classically defined in differential-geometric terms. We generalize to hypersurfaces in any dimension major results known for surfaces in space, which in turn yield a method to estimate the extrinsic and intrinsic curvature of an embedded Riemannian submanifold of general codimension. In particular, integral invariants are defined by the volume, barycenter, and the EVD of the covariance matrix of the domain. We obtain the asymptotic expansion of such invariants for a spherical volume component delimited by a hypersurface and for the hypersurface patch created by ball intersetions, showing that the eigenvalues and eigenvectors can be used as multi-scale estimators of the principal curvatures and principal directions. This approach may be interpreted as performing statistical analysis on the underlying point-set of a submanifold in order to obtain geometric descriptors at scale with potential applications to Manifold Learning and Geometry Processing of point clouds.

Summary

We haven't generated a summary for this paper yet.