Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce (1804.04178v2)

Published 11 Apr 2018 in cs.DS, cs.DC, and quant-ph

Abstract: The edit distance between two strings is defined as the smallest number of insertions, deletions, and substitutions that need to be made to transform one of the strings to another one. Approximating edit distance in subquadratic time is "one of the biggest unsolved problems in the field of combinatorial pattern matching". Our main result is a quantum constant approximation algorithm for computing the edit distance in truly subquadratic time. More precisely, we give an $O(n{1.858})$ quantum algorithm that approximates the edit distance within a factor of $7$. We further extend this result to an $O(n{1.781})$ quantum algorithm that approximates the edit distance within a larger constant factor. Our solutions are based on a framework for approximating edit distance in parallel settings. This framework requires as black box an algorithm that computes the distances of several smaller strings all at once. For a quantum algorithm, we reduce the black box to \textit{metric estimation} and provide efficient algorithms for approximating it. We further show that this framework enables us to approximate edit distance in distributed settings. To this end, we provide a MapReduce algorithm to approximate edit distance within a factor of $3$, with sublinearly many machines and sublinear memory. Also, our algorithm runs in a logarithmic number of rounds.

Citations (73)

Summary

We haven't generated a summary for this paper yet.