Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weighted proper orientations of trees and graphs of bounded treewidth (1804.03884v1)

Published 11 Apr 2018 in cs.DS and cs.CC

Abstract: Given a simple graph $G$, a weight function $w:E(G)\rightarrow \mathbb{N} \setminus {0}$, and an orientation $D$ of $G$, we define $\mu-(D) = \max_{v \in V(G)} w_D-(v)$, where $w-_D(v) = \sum_{u\in N_D{-}(v)}w(uv)$. We say that $D$ is a weighted proper orientation of $G$ if $w-_D(u) \neq w-_D(v)$ whenever $u$ and $v$ are adjacent. We introduce the parameter weighted proper orientation number of $G$, denoted by $\overrightarrow{\chi}(G,w)$, which is the minimum, over all weighted proper orientations $D$ of $G$, of $\mu-(D)$. When all the weights are equal to 1, this parameter is equal to the proper orientation number of $G$, which has been object of recent studies and whose determination is NP-hard in general, but polynomial-time solvable on trees. Here, we prove that the equivalent decision problem of the weighted proper orientation number (i.e., $\overrightarrow{\chi}(G,w) \leq k$?) is (weakly) NP-complete on trees but can be solved by a pseudo-polynomial time algorithm whose running time depends on $k$. Furthermore, we present a dynamic programming algorithm to determine whether a general graph $G$ on $n$ vertices and treewidth at most ${\sf tw}$ satisfies $\overrightarrow{\chi}(G,w) \leq k$, running in time $O(2{{\sf tw}2}\cdot k{3{\sf tw}}\cdot {\sf tw} \cdot n)$, and we complement this result by showing that the problem is W[1]-hard on general graphs parameterized by the treewidth of $G$, even if the weights are polynomial in $n$.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Cláudia Linhares Sales (5 papers)
  2. Ignasi Sau (71 papers)
  3. Ana Silva (38 papers)
  4. Júlio Araújo (9 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.