Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Network Structure, Efficiency, and Performance in WikiProjects (1804.03763v1)

Published 11 Apr 2018 in cs.SI

Abstract: The internet has enabled collaborations at a scale never before possible, but the best practices for organizing such large collaborations are still not clear. Wikipedia is a visible and successful example of such a collaboration which might offer insight into what makes large-scale, decentralized collaborations successful. We analyze the relationship between the structural properties of WikiProject coeditor networks and the performance and efficiency of those projects. We confirm the existence of an overall performance-efficiency trade-off, while observing that some projects are higher than others in both performance and efficiency, suggesting the existence factors correlating positively with both. Namely, we find an association between low-degree coeditor networks and both high performance and high efficiency. We also confirm results seen in previous numerical and small-scale lab studies: higher performance with less skewed node distributions, and higher performance with shorter path lengths. We use agent-based models to explore possible mechanisms for degree-dependent performance and efficiency. We present a novel local-majority learning strategy designed to satisfy properties of real-world collaborations. The local-majority strategy as well as a localized conformity-based strategy both show degree-dependent performance and efficiency, but in opposite directions, suggesting that these factors depend on both network structure and learning strategy. Our results suggest possible benefits to decentralized collaborations made of smaller, more tightly-knit teams, and that these benefits may be modulated by the particular learning strategies in use.

Citations (15)

Summary

We haven't generated a summary for this paper yet.