Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A derivation of the Black-Scholes option pricing model using a central limit theorem argument (1804.03290v2)

Published 10 Apr 2018 in q-fin.GN

Abstract: The Black-Scholes model (sometimes known as the Black-Scholes-Merton model) gives a theoretical estimate for the price of European options. The price evolution under this model is described by the Black-Scholes formula, one of the most well-known formulas in mathematical finance. For their discovery, Merton and Scholes have been awarded the 1997 Nobel prize in Economics. The standard method of deriving the Black-Scholes European call option pricing formula involves stochastic differential equations. This approach is out of reach for most students learning the model for the first time. We provide an alternate derivation using the Lindeberg-Feller central limit theorem under suitable assumptions. Our approach is elementary and can be understood by undergraduates taking a standard undergraduate course in probability.

Summary

We haven't generated a summary for this paper yet.