Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Driven Optimizations for MTJ based Stochastic Computing (1804.03228v1)

Published 9 Apr 2018 in cs.ET

Abstract: Stochastic computing, a form of computation with probabilities, presents an alternative to conventional arithmetic units. Magnetic Tunnel Junctions (MTJs), which exhibit probabilistic switching, have been explored as Stochastic Number Generators (SNGs). We provide a perspective of the energy requirements of such an application and design an energy-efficient and data-sensitive MTJ-based SNG. We discuss its benefits when used for stochastic computations, illustrating with the help of a multiplier circuit, in terms of energy savings when compared to computing with the baseline MTJ-SNG.

Citations (1)

Summary

We haven't generated a summary for this paper yet.