Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Geometry-based Stochastic Double Directional Analytical Model for Millimeter Wave Outdoor NLOS Channels (1804.02831v1)

Published 9 Apr 2018 in cs.IT and math.IT

Abstract: Millimeter wave (mmWave) communications which essentially employ directional antennas find applications spanning from indoor short range wireless personal area networks to outdoor cellular networks. A thorough understanding of mmWave signal propagation through the wireless channel provides valuable insights for the design of such networks which in turn dictates the achievable performance limits. High path loss, penetration loss, and negligible signal scattering are certain distinctive features of the mmWave channel which necessitates the development of new mathematical models. Importantly, the impact of directional antennas which spatially filter multi-path components needs to be embodied as an integral part of the channel model. In this paper, we model outdoor directional non-line-of-sight mmWave channels using a combination of stochastic geometry and image theory by expressing channel parameters as joint functions of transmitter-receiver separation distance, antenna half power beamwidth, and antenna beam pointing direction. By approximating the signal propagation path due to first and second order reflections from buildings, closed form analytical expressions for average number of first order reflection components, path loss, and root-mean square delay spread of channel are derived. The accuracy of the model is verified by comparing numerically obtained results with experimental data reported by various urban outdoor peer-to-peer mmWave measurements, thus demonstrating the usefulness of the proposed analytical model for performance evaluation of mmWave communication networks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.