Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Connecting Dots -- from Local Covariance to Empirical Intrinsic Geometry and Locally Linear Embedding (1804.02811v2)

Published 9 Apr 2018 in math.ST and stat.TH

Abstract: Local covariance structure under the manifold setup has been widely applied in the machine learning society. Based on the established theoretical results, we provide an extensive study of two relevant manifold learning algorithms, empirical intrinsic geometry (EIG) and the locally linear embedding (LLE) under the manifold setup. Particularly, we show that without an accurate dimension estimation, the geodesic distance estimation by EIG might be corrupted. Furthermore, we show that by taking the local covariance matrix into account, we can more accurately estimate the local geodesic distance. When understanding LLE based on the local covariance structure, its intimate relationship with the curvature suggests a variation of LLE depending on the "truncation scheme". We provide a theoretical analysis of the variation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.