Papers
Topics
Authors
Recent
2000 character limit reached

Reconstructing Point Sets from Distance Distributions

Published 6 Apr 2018 in cs.DS, cs.IT, cs.LG, and math.IT | (1804.02465v4)

Abstract: We address the problem of reconstructing a set of points on a line or a loop from their unassigned noisy pairwise distances. When the points lie on a line, the problem is known as the turnpike; when they are on a loop, it is known as the beltway. We approximate the problem by discretizing the domain and representing the $N$ points via an $N$-hot encoding, which is a density supported on the discretized domain. We show how the distance distribution is then simply a collection of quadratic functionals of this density and propose to recover the point locations so that the estimated distance distribution matches the measured distance distribution. This can be cast as a constrained nonconvex optimization problem which we solve using projected gradient descent with a suitable spectral initializer. We derive conditions under which the proposed distance distribution matching approach locally converges to a global optimizer at a linear rate. Compared to the conventional backtracking approach, our method jointly reconstructs all the point locations and is robust to noise in the measurements. We substantiate these claims with state-of-the-art performance across a number of numerical experiments. Our method is the first practical approach to solve the large-scale noisy beltway problem where the points lie on a loop.

Citations (20)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.