Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Quantile Sparse Image (AQuaSI) Prior for Inverse Imaging Problems (1804.02152v2)

Published 6 Apr 2018 in cs.CV

Abstract: Inverse problems play a central role for many classical computer vision and image processing tasks. Many inverse problems are ill-posed, and hence require a prior to regularize the solution space. However, many of the existing priors, like total variation, are based on ad-hoc assumptions that have difficulties to represent the actual distribution of natural images. Thus, a key challenge in research on image processing is to find better suited priors to represent natural images. In this work, we propose the Adaptive Quantile Sparse Image (AQuaSI) prior. It is based on a quantile filter, can be used as a joint filter on guidance data, and be readily plugged into a wide range of numerical optimization algorithms. We demonstrate the efficacy of the proposed prior in joint RGB/depth upsampling, on RGB/NIR image restoration, and in a comparison with related regularization by denoising approaches.

Citations (5)

Summary

We haven't generated a summary for this paper yet.