Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Large-scale Concurrent Data Anonymous Batch Verification Scheme for Mobile Healthcare Crowd Sensing (1804.01822v1)

Published 5 Apr 2018 in cs.CR

Abstract: Recently, with the rapid development of big data, Internet of Things (IoT) brings more and more intelligent and convenient services to people's daily lives. Mobile healthcare crowd sensing (MHCS), as a typical application of IoT, is becoming an effective approach to provide various medical and healthcare services to individual or organizations. However, MHCS still have to face to different security challenges in practice. For example, how to quickly and effectively authenticate masses of bio-information uploaded by IoT terminals without revealing the owners' sensitive information. Therefore, we propose a large-scale concurrent data anonymous batch verification scheme for MHCS based on an improved certificateless aggregate signature. The proposed scheme can authenticate all sensing bio-information at once in a privacy preserving way. The individual data generated by different users can be verified in batch, while the actual identity of participants is hidden. Moreover, assuming the intractability of CDHP, our scheme is proved to be secure. Finally, the performance evaluation shows that the proposed scheme is suitable for MHCS, due to its high efficiency.

Citations (56)

Summary

We haven't generated a summary for this paper yet.