Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revisiting Skip-Gram Negative Sampling Model with Rectification (1804.00306v2)

Published 1 Apr 2018 in cs.CL, cs.LG, and stat.ML

Abstract: We revisit skip-gram negative sampling (SGNS), one of the most popular neural-network based approaches to learning distributed word representation. We first point out the ambiguity issue undermining the SGNS model, in the sense that the word vectors can be entirely distorted without changing the objective value. To resolve the issue, we investigate the intrinsic structures in solution that a good word embedding model should deliver. Motivated by this, we rectify the SGNS model with quadratic regularization, and show that this simple modification suffices to structure the solution in the desired manner. A theoretical justification is presented, which provides novel insights into quadratic regularization . Preliminary experiments are also conducted on Google's analytical reasoning task to support the modified SGNS model.

Citations (12)

Summary

We haven't generated a summary for this paper yet.