Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Resistance to Label Noise in K-NN and DNN Depends on its Concentration (1803.11410v3)

Published 30 Mar 2018 in cs.LG, cs.CV, cs.NE, and stat.ML

Abstract: We investigate the classification performance of K-nearest neighbors (K-NN) and deep neural networks (DNNs) in the presence of label noise. We first show empirically that a DNN's prediction for a given test example depends on the labels of the training examples in its local neighborhood. This motivates us to derive a realizable analytic expression that approximates the multi-class K-NN classification error in the presence of label noise, which is of independent importance. We then suggest that the expression for K-NN may serve as a first-order approximation for the DNN error. Finally, we demonstrate empirically the proximity of the developed expression to the observed performance of K-NN and DNN classifiers. Our result may explain the already observed surprising resistance of DNN to some types of label noise. It also characterizes an important factor of it showing that the more concentrated the noise the greater is the degradation in performance.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com