Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 106 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 228 tok/s Pro
2000 character limit reached

Holographic Renormalization with Machine learning (1803.11056v2)

Published 23 Mar 2018 in physics.gen-ph

Abstract: At low energies, the microscopic characteristics and changes of physical systems as viewed at different distance scales are described by universal scale invariant properties investigated by the Renormalization Group (RG) apparatus, an efficient tool used to deal with scaling problems in effective field theories. We employ an information-theoretic approach in a deep learning setup by introducing an artificial neural network algorithm to map and identify new physical degrees of freedom. Using deep learning methods mapped to a genuine field theory, we develop a mechanism capable to identify relevant degrees of freedom and induce scale invariance without prior knowledge about a system. We show that deep learning algorithms that use an RG-like scheme to learn relevant features from data could help to understand the nature of the holographic entanglement entropy and the holographic principle in context of the AdS/CFT correspondence.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube