Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Projected-gradient algorithms for generalized equilibrium seeking in Aggregative Games are preconditioned Forward-Backward methods (1803.10441v1)

Published 28 Mar 2018 in math.OC, cs.GT, and cs.SY

Abstract: We show that projected-gradient methods for the distributed computation of generalized Nash equilibria in aggregative games are preconditioned forward-backward splitting methods applied to the KKT operator of the game. Specifically, we adopt the preconditioned forward-backward design, recently conceived by Yi and Pavel in the manuscript "A distributed primal-dual algorithm for computation of generalized Nash equilibria via operator splitting methods" for generalized Nash equilibrium seeking in aggregative games. Consequently, we notice that two projected-gradient methods recently proposed in the literature are preconditioned forward-backward methods. More generally, we provide a unifying operator-theoretic ground to design projected-gradient methods for generalized equilibrium seeking in aggregative games.

Citations (59)

Summary

We haven't generated a summary for this paper yet.