Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Reinforcement Learning with Model Learning and Monte Carlo Tree Search in Minecraft (1803.08456v1)

Published 22 Mar 2018 in cs.AI, cs.LG, and stat.ML

Abstract: Deep reinforcement learning has been successfully applied to several visual-input tasks using model-free methods. In this paper, we propose a model-based approach that combines learning a DNN-based transition model with Monte Carlo tree search to solve a block-placing task in Minecraft. Our learned transition model predicts the next frame and the rewards one step ahead given the last four frames of the agent's first-person-view image and the current action. Then a Monte Carlo tree search algorithm uses this model to plan the best sequence of actions for the agent to perform. On the proposed task in Minecraft, our model-based approach reaches the performance comparable to the Deep Q-Network's, but learns faster and, thus, is more training sample efficient.

Citations (13)

Summary

We haven't generated a summary for this paper yet.