Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fine-tuning the Ant Colony System algorithm through Particle Swarm Optimization (1803.08353v1)

Published 21 Mar 2018 in math.OC and cs.NE

Abstract: Ant Colony System (ACS) is a distributed (agent- based) algorithm which has been widely studied on the Symmetric Travelling Salesman Problem (TSP). The optimum parameters for this algorithm have to be found by trial and error. We use a Particle Swarm Optimization algorithm (PSO) to optimize the ACS parameters working in a designed subset of TSP instances. First goal is to perform the hybrid PSO-ACS algorithm on a single instance to find the optimum parameters and optimum solutions for the instance. Second goal is to analyze those sets of optimum parameters, in relation to instance characteristics. Computational results have shown good quality solutions for single instances though with high computational times, and that there may be sets of parameters that work optimally for a majority of instances.

Citations (10)

Summary

We haven't generated a summary for this paper yet.