Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Residual Networks: Lyapunov Stability and Convex Decomposition (1803.08203v1)

Published 22 Mar 2018 in cs.LG, cs.NE, math.DS, math.OC, and stat.ML

Abstract: While training error of most deep neural networks degrades as the depth of the network increases, residual networks appear to be an exception. We show that the main reason for this is the Lyapunov stability of the gradient descent algorithm: for an arbitrarily chosen step size, the equilibria of the gradient descent are most likely to remain stable for the parametrization of residual networks. We then present an architecture with a pair of residual networks to approximate a large class of functions by decomposing them into a convex and a concave part. Some parameters of this model are shown to change little during training, and this imperfect optimization prevents overfitting the data and leads to solutions with small Lipschitz constants, while providing clues about the generalization of other deep networks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.