Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Complexity of Testing Attainment of the Optimal Value in Nonlinear Optimization (1803.07683v2)

Published 20 Mar 2018 in math.OC, cs.CC, math.AG, and math.NA

Abstract: We prove that unless P=NP, there exists no polynomial time (or even pseudo-polynomial time) algorithm that can test whether the optimal value of a nonlinear optimization problem where the objective and constraints are given by low-degree polynomials is attained. If the degrees of these polynomials are fixed, our results along with previously-known "Frank-Wolfe type" theorems imply that exactly one of two cases can occur: either the optimal value is attained on every instance, or it is strongly NP-hard to distinguish attainment from non-attainment. We also show that testing for some well-known sufficient conditions for attainment of the optimal value, such as coercivity of the objective function and closedness and boundedness of the feasible set, is strongly NP-hard. As a byproduct, our proofs imply that testing the Archimedean property of a quadratic module is strongly NP-hard, a property that is of independent interest to the convergence of the Lasserre hierarchy. Finally, we give semidefinite programming (SDP)-based sufficient conditions for attainment of the optimal value, in particular a new characterization of coercive polynomials that lends itself to an SDP hierarchy.

Citations (7)

Summary

We haven't generated a summary for this paper yet.