Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing for Unobserved Heterogeneous Treatment Effects with Observational Data (1803.07514v2)

Published 20 Mar 2018 in econ.EM

Abstract: Unobserved heterogeneous treatment effects have been emphasized in the recent policy evaluation literature (see e.g., Heckman and Vytlacil, 2005). This paper proposes a nonparametric test for unobserved heterogeneous treatment effects in a treatment effect model with a binary treatment assignment, allowing for individuals' self-selection to the treatment. Under the standard local average treatment effects assumptions, i.e., the no defiers condition, we derive testable model restrictions for the hypothesis of unobserved heterogeneous treatment effects. Also, we show that if the treatment outcomes satisfy a monotonicity assumption, these model restrictions are also sufficient. Then, we propose a modified Kolmogorov-Smirnov-type test which is consistent and simple to implement. Monte Carlo simulations show that our test performs well in finite samples. For illustration, we apply our test to study heterogeneous treatment effects of the Job Training Partnership Act on earnings and the impacts of fertility on family income, where the null hypothesis of homogeneous treatment effects gets rejected in the second case but fails to be rejected in the first application.

Summary

We haven't generated a summary for this paper yet.