Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the standing waves of the NLS-log equation with point interaction on a star graph (1803.07194v2)

Published 19 Mar 2018 in math.SP

Abstract: We study a nonlinear Schr\"odinger equation with logarithmic nonlinearity on a star graph $\mathcal{G}$. At the vertex an interaction occurs described by a boundary condition of delta type with strength $\alpha\in \mathbb{R}$. We investigate orbital stability and spectral instability of the standing wave solutions $e{i\omega t}\mathbf{\Phi}(x)$ to the equation when the profile $\mathbf\Phi(x)$ has mixed structure (i.e. has bumps and tails). In our approach we essentially use the extension theory of symmetric operators by Krein - von Neumann, and the analytic perturbations theory.

Summary

We haven't generated a summary for this paper yet.