Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lossless Analog Compression (1803.06887v4)

Published 19 Mar 2018 in math.FA, cs.IT, and math.IT

Abstract: We establish the fundamental limits of lossless analog compression by considering the recovery of arbitrary m-dimensional real random vectors x from the noiseless linear measurements y=Ax with n x m measurement matrix A. Our theory is inspired by the groundbreaking work of Wu and Verdu (2010) on almost lossless analog compression, but applies to the nonasymptotic, i.e., fixed-m case, and considers zero error probability. Specifically, our achievability result states that, for almost all A, the random vector x can be recovered with zero error probability provided that n > K(x), where K(x) is given by the infimum of the lower modified Minkowski dimension over all support sets U of x. We then particularize this achievability result to the class of s-rectifiable random vectors as introduced in Koliander et al. (2016); these are random vectors of absolutely continuous distribution -- with respect to the s-dimensional Hausdorff measure -- supported on countable unions of s-dimensional differentiable submanifolds of the m-dimensional real coordinate space. Countable unions of differentiable submanifolds include essentially all signal models used in the compressed sensing literature. Specifically, we prove that, for almost all A, s-rectifiable random vectors x can be recovered with zero error probability from n>s linear measurements. This threshold is, however, found not to be tight as exemplified by the construction of an s-rectifiable random vector that can be recovered with zero error probability from n<s linear measurements. This leads us to the introduction of the new class of s-analytic random vectors, which admit a strong converse in the sense of n greater than or equal to s being necessary for recovery with probability of error smaller than one. The central conceptual tools in the development of our theory are geometric measure theory and the theory of real analytic functions.

Citations (19)

Summary

We haven't generated a summary for this paper yet.