Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linearization of third-order ordinary differential equations u'''=f(x,u,u',u'') via point transformations (1803.06556v1)

Published 17 Mar 2018 in math.CA and math.DG

Abstract: The linearization problem by use of the Cartan equivalence method for scalar third-order ODEs via point transformations was solved partially in [1,2]. In order to solve this problem completely, the Cartan equivalence method is applied to provide an invariant characterization of the linearizable third-order ordinary differential equation u'''=f(x,u,u',u'') which admits a four-dimensional point symmetry Lie algebra. The invariant characterization is given in terms of the function f in a compact form. A simple procedure to construct the equivalent canonical form by use of an obtained invariant is also presented. The method provides auxiliary functions which can be utilized to efficiently determine the point transformation that does the reduction to the equivalent canonical form. Furthermore, illustrations to the main theorem and applications are given.

Summary

We haven't generated a summary for this paper yet.