2000 character limit reached
Graphs, Ultrafilters and Colourability
Published 16 Mar 2018 in math.CT and math.CO | (1803.06366v1)
Abstract: Let $\beta$ be the functor from Set to CHaus which maps each discrete set X to its Stone-Cech compactification, the set $\beta$ X of ultrafilters on X. Every graph G with vertex set V naturally gives rise to a graph $\beta G$ on the set $\beta V$ of ultrafilters on V . In what follows, we interrelate the properties of G and $\beta G$. Perhaps the most striking result is that G can be finitely coloured iff $\beta G$ has no loops.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.