Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability Engineering of Halide Perovskite via Machine Learning (1803.06042v1)

Published 16 Mar 2018 in cond-mat.mtrl-sci

Abstract: Perovskite stability is of the core importance and difficulty in current research and application of perovskite solar cells. Nevertheless, over the past century, the formability and stability of perovskite still relied on simplified factor based on human knowledge, such as the commonly used tolerance factor t. Combining ML with first-principles density functional calculations, we proposed a strategy to firstly calculate the decomposition energies, considered to be closely related to thermodynamic stability, of 354 kinds halide perovskites, establish the machine learning relationship between decomposition energy and compositional ionic radius and investigate the stabilities of 14,190 halide double perovskites. The ML-predicted results enable us to rediscover a series of stable rare earth metal halide perovskites (up to ~1000 kinds), indicating the generalization of this model and further provide elemental and concentration suggestion for improving the stability of mixed perovskite.

Summary

We haven't generated a summary for this paper yet.