Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Autonomous Efficient Experiment Design for Materials Discovery with Bayesian Model Averaging (1803.05460v5)

Published 14 Mar 2018 in physics.comp-ph and cond-mat.mtrl-sci

Abstract: The accelerated exploration of the materials space in order to identify configurations with optimal properties is an ongoing challenge. Current paradigms are typically centered around the idea of performing this exploration through high-throughput experimentation/computation. Such approaches, however, do not account fo the always present constraints in resources available. Recently, this problem has been addressed by framing materials discovery as an optimal experiment design. This work augments earlier efforts by putting forward a framework that efficiently explores the materials design space not only accounting for resource constraints but also incorporating the notion of model uncertainty. The resulting approach combines Bayesian Model Averaging within Bayesian Optimization in order to realize a system capable of autonomously and adaptively learning not only the most promising regions in the materials space but also the models that most efficiently guide such exploration. The framework is demonstrated by efficiently exploring the MAX ternary carbide/nitride space through Density Functional Theory (DFT) calculations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.