Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Security of Some Compact Keys for McEliece Scheme (1803.05289v1)

Published 14 Mar 2018 in cs.IT, cs.CR, and math.IT

Abstract: In this paper we study the security of the key of compact McEliece schemes based on alternant/Goppa codes with a non-trivial permutation group, in particular quasi-cyclic alternant codes. We show that it is possible to reduce the key-recovery problem on the original quasi-cyclic code to the same problem on a smaller code derived from the public key. This result is obtained thanks to the invariant code operation which gives the subcode whose elements are fixed by a permutation in Perm(C). The fundamental advantage is that the invariant subcode of an alternant code is an alternant code. This approach improves the technique of Faugere, Otmani, Tillich, Perret and Portzamparc which uses folded codes of alternant codes obtained by using supports globally stable by an affine map. We use a simpler approach with a unified view on quasi-cyclic alternant codes and we treat the case of automorphisms arising from a non affine homography. In addition, we provide an efficient algorithm to recover the full structure of the alternant code from the structure of the invariant code.

Citations (8)

Summary

We haven't generated a summary for this paper yet.