Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ranking with Adaptive Neighbors (1803.05105v1)

Published 14 Mar 2018 in cs.LG and stat.ML

Abstract: Retrieving the most similar objects in a large-scale database for a given query is a fundamental building block in many application domains, ranging from web searches, visual, cross media, and document retrievals. State-of-the-art approaches have mainly focused on capturing the underlying geometry of the data manifolds. Graph-based approaches, in particular, define various diffusion processes on weighted data graphs. Despite success, these approaches rely on fixed-weight graphs, making ranking sensitive to the input affinity matrix. In this study, we propose a new ranking algorithm that simultaneously learns the data affinity matrix and the ranking scores. The proposed optimization formulation assigns adaptive neighbors to each point in the data based on the local connectivity, and the smoothness constraint assigns similar ranking scores to similar data points. We develop a novel and efficient algorithm to solve the optimization problem. Evaluations using synthetic and real datasets suggest that the proposed algorithm can outperform the existing methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.