Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Supremacy and the Complexity of Random Circuit Sampling (1803.04402v1)

Published 12 Mar 2018 in quant-ph and cs.CC

Abstract: A critical milestone on the path to useful quantum computers is quantum supremacy - a demonstration of a quantum computation that is prohibitively hard for classical computers. A leading near-term candidate, put forth by the Google/UCSB team, is sampling from the probability distributions of randomly chosen quantum circuits, which we call Random Circuit Sampling (RCS). In this paper we study both the hardness and verification of RCS. While RCS was defined with experimental realization in mind, we show complexity theoretic evidence of hardness that is on par with the strongest theoretical proposals for supremacy. Specifically, we show that RCS satisfies an average-case hardness condition - computing output probabilities of typical quantum circuits is as hard as computing them in the worst-case, and therefore #P-hard. Our reduction exploits the polynomial structure in the output amplitudes of random quantum circuits, enabled by the Feynman path integral. In addition, it follows from known results that RCS satisfies an anti-concentration property, making it the first supremacy proposal with both average-case hardness and anti-concentration.

Citations (66)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com