Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fractional L-intersecting families (1803.03954v2)

Published 11 Mar 2018 in math.CO and cs.DM

Abstract: Let $L = {\frac{a_1}{b_1}, \ldots , \frac{a_s}{b_s}}$, where for every $i \in [s]$, $\frac{a_i}{b_i} \in [0,1)$ is an irreducible fraction. Let $\mathcal{F} = {A_1, \ldots , A_m}$ be a family of subsets of $[n]$. We say $\mathcal{F}$ is a \emph{fractional $L$-intersecting family} if for every distinct $i,j \in [m]$, there exists an $\frac{a}{b} \in L$ such that $|A_i \cap A_j| \in { \frac{a}{b}|A_i|, \frac{a}{b} |A_j|}$. In this paper, we introduce and study the notion of fractional $L$-intersecting families.

Citations (9)

Summary

We haven't generated a summary for this paper yet.