Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Smartphone apps usage patterns as a predictor of perceived stress levels at workplace (1803.03863v1)

Published 10 Mar 2018 in cs.CY

Abstract: Explosion of number of smartphone apps and their diversity has created a fertile ground to study behaviour of smartphone users. Patterns of app usage, specifically types of apps and their duration are influenced by the state of the user and this information can be correlated with the self-reported state of the users. The work in this paper is along the line of understanding patterns of app usage and investigating relationship of these patterns with the perceived stress level within the workplace context. Our results show that using a subject-centric behaviour model we can predict stress levels based on smartphone app usage. The results we have achieved, of average accuracy of 75% and precision of 85.7%, can be used as an indicator of overall stress levels in work environments and in turn inform stress reduction organisational policies, especially when considering interrelation between stress and productivity of workers.

Citations (6)

Summary

We haven't generated a summary for this paper yet.