Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Directing Chemotaxis-Based Spatial Self-Organization via Biased, Random Initial Conditions (1803.03654v1)

Published 9 Mar 2018 in cs.MA

Abstract: Inspired by the chemotaxis interaction of living cells, we have developed an agent-based approach for self-organizing shape formation. Since all our simulations begin with a different uniform random configuration and our agents move stochastically, it has been observed that the self-organization process may form two or more stable final configurations. These differing configurations may be characterized via statistical moments of the agents' locations. In order to direct the agents to robustly form one specific configuration, we generate biased initial conditions whose statistical moments are related to moments of the desired configuration. With this approach, we are able to successfully direct the aggregating swarms to produced a desired macroscopic shape, starting from randomized initial conditions with controlled statistical properties.

Citations (2)

Summary

We haven't generated a summary for this paper yet.