Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SentRNA: Improving computational RNA design by incorporating a prior of human design strategies (1803.03146v2)

Published 8 Mar 2018 in q-bio.QM, cs.AI, and stat.ML

Abstract: Solving the RNA inverse folding problem is a critical prerequisite to RNA design, an emerging field in bioengineering with a broad range of applications from reaction catalysis to cancer therapy. Although significant progress has been made in developing machine-based inverse RNA folding algorithms, current approaches still have difficulty designing sequences for large or complex targets. On the other hand, human players of the online RNA design game EteRNA have consistently shown superior performance in this regard, being able to readily design sequences for targets that are challenging for machine algorithms. Here we present a novel approach to the RNA design problem, SentRNA, a design agent consisting of a fully-connected neural network trained end-to-end using human-designed RNA sequences. We show that through this approach, SentRNA can solve complex targets previously unsolvable by any machine-based approach and achieve state-of-the-art performance on two separate challenging test sets. Our results demonstrate that incorporating human design strategies into a design algorithm can significantly boost machine performance and suggests a new paradigm for machine-based RNA design.

Citations (16)

Summary

We haven't generated a summary for this paper yet.