Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Frontier improvement in the DEA models (1803.02705v2)

Published 7 Mar 2018 in math.OC

Abstract: Applications of data envelopment analysis (DEA) show that many inefficient units are projected onto the weakly efficient parts of the frontier when efficiency scores are computed. However this fact disagrees with the main concept of the DEA approach, because the efficiency score of an inefficient unit has to be measured relative to an efficient unit. As a consequence inaccurate efficiency scores may be obtained. This happens because a non-countable (continuous) production possibility set is determined on a basis of a finite number of production units. It has been proposed in the literature to use artificial production units in the primal space of inputs and outputs as a starting point in order to improve the frontier of the DEA models. Farrell was the first who introduced artificial units in the primal space of inputs and outputs in order to secure convex isoquants. In previous papers we introduced the notion of terminal units. Moreover, some relationships were established between terminal units and other sets of units that were proposed for improving envelopment. In this paper we develop an algorithm for improving the frontier. The construction of algorithm is based on the notion of terminal units. Our theoretical results are verified by computational experiments using real-life data sets and also confirmed by graphical examples.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)