Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generating Goal-Directed Visuomotor Plans Based on Learning Using a Predictive Coding-type Deep Visuomotor Recurrent Neural Network Model (1803.02578v2)

Published 7 Mar 2018 in cs.CV

Abstract: The current paper presents how a predictive coding type deep recurrent neural networks can generate vision-based goal-directed plans based on prior learning experience by examining experiment results using a real arm robot. The proposed deep recurrent neural network learns to predict visuo-proprioceptive sequences by extracting an adequate predictive model from various visuomotor experiences related to object-directed behaviors. The predictive model was developed in terms of mapping from intention state space to expected visuo-proprioceptive sequences space through iterative learning. Our arm robot experiments adopted with three different tasks with different levels of difficulty showed that the error minimization principle in the predictive coding framework applied to inference of the optimal intention states for given goal states can generate goal-directed plans even for unlearned goal states with generalization. It was, however, shown that sufficient generalization requires relatively large number of learning trajectories. The paper discusses possible countermeasure to overcome this problem.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Minkyu Choi (16 papers)
  2. Takazumi Matsumoto (4 papers)
  3. Minju Jung (9 papers)
  4. Jun Tani (37 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com