Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding and Improving Multi-Sense Word Embeddings via Extended Robust Principal Component Analysis (1803.01255v1)

Published 3 Mar 2018 in cs.CL

Abstract: Unsupervised learned representations of polysemous words generate a large of pseudo multi senses since unsupervised methods are overly sensitive to contextual variations. In this paper, we address the pseudo multi-sense detection for word embeddings by dimensionality reduction of sense pairs. We propose a novel principal analysis method, termed Ex-RPCA, designed to detect both pseudo multi senses and real multi senses. With Ex-RPCA, we empirically show that pseudo multi senses are generated systematically in unsupervised method. Moreover, the multi-sense word embeddings can by improved by a simple linear transformation based on Ex-RPCA. Our improved word embedding outperform the original one by 5.6 points on Stanford contextual word similarity (SCWS) dataset. We hope our simple yet effective approach will help the linguistic analysis of multi-sense word embeddings in the future.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Haoyue Shi (13 papers)
  2. Yuqi Sun (16 papers)
  3. Junfeng Hu (17 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.