Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Every toroidal graph without triangles adjacent to $5$-cycles is DP-$4$-colorable (1803.01197v2)

Published 3 Mar 2018 in math.CO and cs.DM

Abstract: DP-coloring, also known as correspondence coloring, is introduced by Dvo{\v{r}}{\'{a}}k and Postle. It is a generalization of list coloring. In this paper, we show that every connected toroidal graph without triangles adjacent to $5$-cycles has minimum degree at most three unless it is a 2-connected $4$-regular graph with Euler characteristic $\epsilon(G) = 0$. Consequently, every toroidal graph without triangles adjacent to $5$-cycles is DP-$4$-colorable. In the final, we show that every planar graph without two certain subgraphs is DP-$4$-colorable. As immediate consequences, (i) every planar graph without $3$-cycles adjacent to $4$-cycles is DP-$4$-colorable; (ii) every planar graph without $3$-cycles adjacent to $5$-cycles is DP-$4$-colorable; (iii) every planar graph without $4$-cycles adjacent to $5$-cycles is DP-$4$-colorable.

Citations (1)

Summary

We haven't generated a summary for this paper yet.