Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Matrix-product structure of constacyclic codes over finite chain rings $\mathbb{F}_{p^m}[u]/\langle u^e\rangle$ (1803.01095v1)

Published 3 Mar 2018 in cs.IT and math.IT

Abstract: Let $m,e$ be positive integers, $p$ a prime number, $\mathbb{F}{pm}$ be a finite field of $pm$ elements and $R=\mathbb{F}{pm}[u]/\langle ue\rangle$ which is a finite chain ring. For any $\omega\in R\times$ and positive integers $k, n$ satisfying ${\rm gcd}(p,n)=1$, we prove that any $(1+\omega u)$-constacyclic code of length $pkn$ over $R$ is monomially equivalent to a matrix-product code of a nested sequence of $pk$ cyclic codes with length $n$ over $R$ and a $pk\times pk$ matrix $A_{pk}$ over $\mathbb{F}_p$. Using the matrix-product structures, we give an iterative construction of every $(1+\omega u)$-constacyclic code by $(1+\omega u)$-constacyclic codes of shorter lengths over $R$.

Citations (6)

Summary

We haven't generated a summary for this paper yet.