Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 105 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 218 tok/s Pro
2000 character limit reached

Alternatives for Generating a Reduced Basis to Solve the Hyperspectral Diffuse Optical Tomography Model (1803.00948v1)

Published 2 Mar 2018 in math.NA and math.AP

Abstract: The Reduced Basis Method (RBM) is a model reduction technique used to solve parametric PDEs that relies upon a basis set of solutions to the PDE at specific parameter values. To generate this reduced basis, the set of a small number of parameter values must be strategically chosen. We apply a Metropolis algorithm and a gradient algorithm to find the set of parameters and compare them to the standard greedy algorithm most commonly used in the RBM. We test our methods by using the RBM to solve a simplified version of the governing partial differential equation for hyperspectral diffuse optical tomography (hyDOT). The governing equation for hyDOT is an elliptic PDE parameterized by the wavelength of the laser source. For this one-dimensional problem, we find that both the Metropolis and gradient algorithms are potentially superior alternatives to the greedy algorithm in that they generate a reduced basis which produces solutions with a smaller relative error with respect to solutions found using the finite element method and in less time.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.