Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond black-boxes in Bayesian inverse problems and model validation: applications in solid mechanics of elastography (1803.00930v3)

Published 2 Mar 2018 in physics.comp-ph and stat.ML

Abstract: The present paper is motivated by one of the most fundamental challenges in inverse problems, that of quantifying model discrepancies and errors. While significant strides have been made in calibrating model parameters, the overwhelming majority of pertinent methods is based on the assumption of a perfect model. Motivated by problems in solid mechanics which, as all problems in continuum thermodynamics, are described by conservation laws and phenomenological constitutive closures, we argue that in order to quantify model uncertainty in a physically meaningful manner, one should break open the black-box forward model. In particular we propose formulating an undirected probabilistic model that explicitly accounts for the governing equations and their validity. This recasts the solution of both forward and inverse problems as probabilistic inference tasks where the problem's state variables should not only be compatible with the data but also with the governing equations as well. Even though the probability densities involved do not contain any black-box terms, they live in much higher-dimensional spaces. In combination with the intractability of the normalization constant of the undirected model employed, this poses significant challenges which we propose to address with a linearly-scaling, double-layer of Stochastic Variational Inference. We demonstrate the capabilities and efficacy of the proposed model in synthetic forward and inverse problems (with and without model error) in elastography.

Citations (9)

Summary

We haven't generated a summary for this paper yet.