Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Escoin: Efficient Sparse Convolutional Neural Network Inference on GPUs (1802.10280v2)

Published 28 Feb 2018 in cs.DC, cs.CV, and cs.LG

Abstract: Deep neural networks have achieved remarkable accuracy in many artificial intelligence applications, e.g. computer vision, at the cost of a large number of parameters and high computational complexity. Weight pruning can compress DNN models by removing redundant parameters in the networks, but it brings sparsity in the weight matrix, and therefore makes the computation inefficient on GPUs. Although pruning can remove more than 80% of the weights, it actually hurts inference performance (speed) when running models on GPUs. Two major problems cause this unsatisfactory performance on GPUs. First, lowering convolution onto matrix multiplication reduces data reuse opportunities and wastes memory bandwidth. Second, the sparsity brought by pruning makes the computation irregular, which leads to inefficiency when running on massively parallel GPUs. To overcome these two limitations, we propose Escort, an efficient sparse convolutional neural networks on GPUs. Instead of using the lowering method, we choose to compute the sparse convolutions directly. We then orchestrate the parallelism and locality for the direct sparse convolution kernel, and apply customized optimization techniques to further improve performance. Evaluation on NVIDIA GPUs show that Escort can improve sparse convolution speed by 2.63x and 3.07x, and inference speed by 1.43x and 1.69x, compared to CUBLAS and CUSPARSE respectively.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Xuhao Chen (13 papers)
Citations (25)

Summary

We haven't generated a summary for this paper yet.