Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Exponential time decay of solutions to reaction-cross-diffusion systems of Maxwell-Stefan type (1802.10274v1)

Published 28 Feb 2018 in math.AP

Abstract: The large-time asymptotics of weak solutions to Maxwell--Stefan diffusion systems for chemically reacting fluids with different molar masses and reversible reactions are investigated. The diffusion matrix of the system is generally neither symmetric nor positive definite, but the equations admit a formal gradient-flow structure which provides entropy (free energy) estimates. The main result is the exponential decay to the unique equilibrium with a rate that is constructive up to a finite-dimensional inequality. The key elements of the proof are the existence of a unique detailed-balanced equilibrium and the derivation of an inequality relating the entropy and the entropy production. The main difficulty comes from the fact that the reactions are represented by molar fractions while the conservation laws hold for the concentrations. The idea is to enlarge the space of $n$ partial concentrations by adding the total concentration, viewed as an independent variable, thus working with $n+1$ variables. Further results concern the existence of global bounded weak solutions to the parabolic system and an extension of the results to complex-balanced systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.