Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerating Asynchronous Algorithms for Convex Optimization by Momentum Compensation (1802.09747v1)

Published 27 Feb 2018 in math.OC and cs.LG

Abstract: Asynchronous algorithms have attracted much attention recently due to the crucial demands on solving large-scale optimization problems. However, the accelerated versions of asynchronous algorithms are rarely studied. In this paper, we propose the "momentum compensation" technique to accelerate asynchronous algorithms for convex problems. Specifically, we first accelerate the plain Asynchronous Gradient Descent, which achieves a faster $O(1/\sqrt{\epsilon})$ (v.s. $O(1/\epsilon)$) convergence rate for non-strongly convex functions, and $O(\sqrt{\kappa}\log(1/\epsilon))$ (v.s. $O(\kappa \log(1/\epsilon))$) for strongly convex functions to reach an $\epsilon$- approximate minimizer with the condition number $\kappa$. We further apply the technique to accelerate modern stochastic asynchronous algorithms such as Asynchronous Stochastic Coordinate Descent and Asynchronous Stochastic Gradient Descent. Both of the resultant practical algorithms are faster than existing ones by order. To the best of our knowledge, we are the first to consider accelerated algorithms that allow updating by delayed gradients and are the first to propose truly accelerated asynchronous algorithms. Finally, the experimental results on a shared memory system show that acceleration can lead to significant performance gains on ill-conditioned problems.

Citations (12)

Summary

We haven't generated a summary for this paper yet.