Papers
Topics
Authors
Recent
2000 character limit reached

The Dynamics of Knowledge Acquisition via Self-Learning in Complex Networks

Published 26 Feb 2018 in cs.SI and physics.soc-ph | (1802.09337v2)

Abstract: Studies regarding knowledge organization and acquisition are of great importance to understand areas related to science and technology. A common way to model the relationship between different concepts is through complex networks. In such representations, network's nodes store knowledge and edges represent their relationships. Several studies that considered this type of structure and knowledge acquisition dynamics employed one or more agents to discover node concepts by walking on the network. In this study, we investigate a different type of dynamics considering a single node as the "network brain". Such brain represents a range of real systems such as the information about the environment that is acquired by a person and is stored in the brain. To store the discovered information in a specific node, the agents walk on the network and return to the brain. We propose three different dynamics and test them on several network models and on a real system, which is formed by journal articles and their respective citations. Surprisingly, the results revealed that, according to the adopted walking models, the efficiency of self-knowledge acquisition has only a weak dependency on the topology, search strategy and localization of the network brain.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.