Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Dynamics of Knowledge Acquisition via Self-Learning in Complex Networks (1802.09337v2)

Published 26 Feb 2018 in cs.SI and physics.soc-ph

Abstract: Studies regarding knowledge organization and acquisition are of great importance to understand areas related to science and technology. A common way to model the relationship between different concepts is through complex networks. In such representations, network's nodes store knowledge and edges represent their relationships. Several studies that considered this type of structure and knowledge acquisition dynamics employed one or more agents to discover node concepts by walking on the network. In this study, we investigate a different type of dynamics considering a single node as the "network brain". Such brain represents a range of real systems such as the information about the environment that is acquired by a person and is stored in the brain. To store the discovered information in a specific node, the agents walk on the network and return to the brain. We propose three different dynamics and test them on several network models and on a real system, which is formed by journal articles and their respective citations. Surprisingly, the results revealed that, according to the adopted walking models, the efficiency of self-knowledge acquisition has only a weak dependency on the topology, search strategy and localization of the network brain.

Citations (16)

Summary

We haven't generated a summary for this paper yet.