Papers
Topics
Authors
Recent
Search
2000 character limit reached

A representer theorem for deep neural networks

Published 26 Feb 2018 in stat.ML and cs.LG | (1802.09210v2)

Abstract: We propose to optimize the activation functions of a deep neural network by adding a corresponding functional regularization to the cost function. We justify the use of a second-order total-variation criterion. This allows us to derive a general representer theorem for deep neural networks that makes a direct connection with splines and sparsity. Specifically, we show that the optimal network configuration can be achieved with activation functions that are nonuniform linear splines with adaptive knots. The bottom line is that the action of each neuron is encoded by a spline whose parameters (including the number of knots) are optimized during the training procedure. The scheme results in a computational structure that is compatible with the existing deep-ReLU, parametric ReLU, APL (adaptive piecewise-linear) and MaxOut architectures. It also suggests novel optimization challenges, while making the link with $\ell_1$ minimization and sparsity-promoting techniques explicit.

Citations (98)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.