On the Broadcast Routing Problem in Computer Networks (1802.08955v3)
Abstract: Given an undirected graph $G = (V, E)$, and a vertex $r\in V$, an $r$-acyclic orientation of $G$ is an orientation $OE$ of the edges of $G$ such that the digraph $OG = (V, OE)$ is acyclic and $r$ is the unique vertex with indegree equal to 0. For $w\in \mathbb{R}E_+$, $k(G, w)$ is the value of the $w$-maximum packing of $r$-arborescences for all $r\in V$ and all $r$-acyclic orientations $OE$ of $G$. In this case, the Broadcast Routing (in Computers Networks) Problem (BRP) is to compute $k(G, w)$, by finding an optimal $r$ and an optimal $r$-acyclic orientation. BRP is a mathematical formulation of multipath broadcast routing in computer networks. In this paper, we provide a polynomial time algorithm to solve BRP in outerplanar graphs. Outerplanar graphs are encountered in many applications such as computational geometry, robotics, etc.