Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
89 tokens/sec
Gemini 2.5 Pro Premium
41 tokens/sec
GPT-5 Medium
23 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
96 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
467 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

An Algorithmic Framework to Control Bias in Bandit-based Personalization (1802.08674v1)

Published 23 Feb 2018 in cs.LG, cs.AI, cs.CY, and cs.IR

Abstract: Personalization is pervasive in the online space as it leads to higher efficiency and revenue by allowing the most relevant content to be served to each user. However, recent studies suggest that personalization methods can propagate societal or systemic biases and polarize opinions; this has led to calls for regulatory mechanisms and algorithms to combat bias and inequality. Algorithmically, bandit optimization has enjoyed great success in learning user preferences and personalizing content or feeds accordingly. We propose an algorithmic framework that allows for the possibility to control bias or discrimination in such bandit-based personalization. Our model allows for the specification of general fairness constraints on the sensitive types of the content that can be displayed to a user. The challenge, however, is to come up with a scalable and low regret algorithm for the constrained optimization problem that arises. Our main technical contribution is a provably fast and low-regret algorithm for the fairness-constrained bandit optimization problem. Our proofs crucially leverage the special structure of our problem. Experiments on synthetic and real-world data sets show that our algorithmic framework can control bias with only a minor loss to revenue.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com