Papers
Topics
Authors
Recent
Search
2000 character limit reached

A projector-based convergence proof of the Ginelli algorithm for covariant Lyapunov vectors

Published 23 Feb 2018 in math.DS | (1802.08461v2)

Abstract: Linear perturbations of solutions of dynamical systems exhibit different asymptotic growth rates, which are naturally characterized by so-called covariant Lyapunov vectors (CLVs). Due to an increased interest of CLVs in applications, several algorithms were developed to compute them. The Ginelli algorithm is among the most commonly used. Although several properties of the algorithm have been analyzed, there exists no mathematically rigorous convergence proof yet. In this article we extend existing approaches in order to construct a projector-based convergence proof of Ginelli's algorithm. One of the main ingredients will be an asymptotic characterization of CLVs via the Multiplicative Ergodic Theorem. In the proof, we keep a rather general setting allowing even for degenerate Lyapunov spectra.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.