Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving Linear Inverse Problems Using GAN Priors: An Algorithm with Provable Guarantees (1802.08406v1)

Published 23 Feb 2018 in stat.ML and cs.LG

Abstract: In recent works, both sparsity-based methods as well as learning-based methods have proven to be successful in solving several challenging linear inverse problems. However, sparsity priors for natural signals and images suffer from poor discriminative capability, while learning-based methods seldom provide concrete theoretical guarantees. In this work, we advocate the idea of replacing hand-crafted priors, such as sparsity, with a Generative Adversarial Network (GAN) to solve linear inverse problems such as compressive sensing. In particular, we propose a projected gradient descent (PGD) algorithm for effective use of GAN priors for linear inverse problems, and also provide theoretical guarantees on the rate of convergence of this algorithm. Moreover, we show empirically that our algorithm demonstrates superior performance over an existing method of leveraging GANs for compressive sensing.

Citations (154)

Summary

We haven't generated a summary for this paper yet.