Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 38 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

Learning to Synthesize (1802.07608v1)

Published 21 Feb 2018 in cs.SE

Abstract: In many scenarios we need to find the most likely program under a local context, where the local context can be an incomplete program, a partial specification, natural language description, etc. We call such problem program estimation. In this paper we propose an abstract framework, learning to synthesis, or L2S in short, to address this problem. L2S combines four tools to achieve this: syntax is used to define the search space and search steps, constraints are used to prune off invalid candidates at each search step, machine-learned models are used to estimate conditional probabilities for the candidates at each search step, and search algorithms are used to find the best possible solution. The main goal of L2S is to lay out the design space to motivate the research on program estimation. We have performed a preliminary evaluation by instantiating this framework for synthesizing conditions of an automated program repair (APR) system. The training data are from the project itself and related JDK packages. Compared to ACS, a state-of-the-art condition synthesis system for program repair, our approach could deal with a larger search space such that we fixed 4 additional bugs outside the search space of ACS, and relies only on the source code of the current projects.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.